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BIFURCATION IN THE DUFFING EQUATION
WITH INDEPENDENT PARAMETERS, II

Snopsis: In a previous paper, the authors gave a complete
description of the number of even harmonic solutions of Duffing's
equation without damping for the parameters varying in a full
neighborhood of the origin in the parameter space. In this paper,
the analysis is extended to the case of an independent small
damping term. It is also shown that all solutions of the undamped

equation are even functions of time.

1. Introduction.

Consider the Duffing equation with damping,

d2u du 3
—5 + U = pju+ p, 3F = pyu” + py cost (1.1)
dat

where p = (pl,pz,p3,p4) is a real four dimensional vector varying

in a neighborhood U of the origin. Our objective is to discuss
the 2mr-periodic solutions of Equation (l.1l) for each p in a
sufficiently small neighborhood U. 1In a previous paper (2], the
authors gave a complete description of the number of solutions

for the undamped case, Py = 0, under the hypothesis that the solu-
tions were continuous in P; and even in t. The hypothesis of
evenness made it possible to reduce the discussion to a single bi-
furcation equation, When the damping term is present, such an
hypothesis is meaningless and, therefore, two bifurcation equations
must De considered. A complete analysis is possible after one has

exploited the symmetry properties in Equation (1l.1l) to obtain
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detailed qualitative properties of the bifurcation equation.

latter information is also used to show that all 2mw-periodic
tions of the undamped equation are even in t. The analysis in
the present paper is in the same spirit as in [2] and uses ideas

from [1], [3].

2. The Bifurcation Equations.

Consider the system:

d2u 3
—s + u - p,u + p,u” = 0, (2.1)
dt2 1 2

A 2m-periodic solution continuous in P3P, is a continuous

function from a deleted neighborhood V - {(0,0)} (depending on
pl,pz) of O eg?Z into the space of 2w-periodic functions which
associates to each (pl,pz) e V- {(0,0)} a 2m-periodic solution
u(pl,pz,p3,p4)(t) of Equation (1.1). Furthermore, the set
{u(pysPyrP3sPy)r (P3ePy) €V = {(0,0)}}, with the uniform topology,

is precompact and every limit point of this set as (p3,p4) > 0

is a 2m-periodic solution of (2.1).

The idea for considering this particular type of continuous
dependence on the parameters came for a paper of Hale and Taboas [4]
in the consideration of 2r-periodic solutions of another type of
equation. This definition is more general than the one considered

by the authors in [2].

Since we are only interested in solutions of this form, it is

necessary to discuss some detailed properties of the solutions of

(2.1).
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The ncessary information is contained in the following lemma,

E | whose proof was given in [2].

Lemma 2.l. There is a constant k > 0 and a neighborhood U in

gﬂz of (pl,pz) = (0,0) such that a nonconstant 2w-periodic solu-

tion u of (2.1) exists for (pl,pz) € U if and only if PP, > 0,

. e Ty,
PR ST MR i i s st

this solution is unique except for a phase shift and satisfies

lute)| < klpy/py Y2

If (pyspy)l € U and either p;p, < 0, p, > 0 or py #py =0,

the only 2m-periodic solution of (2.1) is u = 0. If PPy # 0,

P, < 0, there are the 2m-periodic solution u = 0,

u = t[(l-pl)/|92|]l/2. 1f P, = 0, p, = 0, every solution of

(2.1) is 2m-periodic.

For p, < 0, there are always two 2m-periodic solutions of

Equation (l.1) which exist for p = (Py/P,sP3sP,) € R ina

1/2

neighborhood of zero and coincide with t[(l—pl/|Pz|] for

P3 = Py = 0. This is proved in the same manner as in [2] and is

Lemma 2.2, There is a neighborhood U in 2* of p=0 and

stated precisely in the following lemma. ﬂ
i
!
b

that for every p € U, py < 0, there exist two 2m-periodic solutions

of Equation (l.l) which are continuous in (p3,p4) and coincide |

with t[(l-pl)/|p2|]l/2 for p; = py = 0. All other such 2m- '

¥ i e a4 g e oot o i e el i
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periodic solutions of Equation (1.1) for Py =Py = 0 must

coincide with the solution u = 0 of Equation (2.1) or a nonconstant
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periodic solution of Equation (2.1).

To obtain the other 2n-periodic solutions of Equation (1.1)
-1/2

continuous in (p3,p4), let Py > 0, u= VP, in Equation (2.1)
to obtain the equation
e BRI R S t (2.2)
t
where o = p;/2p3. From Lemma 2.1, we know that pé/zu is

bounded and, furthermore, that the only 2m-periodic solutions of
Equation (2.2) that need to be considered are those for which v
is small. If Py < 0, the same remark is true (of course, with

—v3 replaced by +v3) provided the two solutions in Lemma 2.2

are excluded from the discussion.

We now discuss 2m-periodic solutions of Equation (2.2) for
(v,pl,c,p4) in a small neighborhood of the origin. The procedure
will be the classical one used in [2] to obtain the bifurcation
equations. Any 2n-periodic solution of Equation (2.2) for P, =
By = om 0 must be equal to r cos(t-¢) + 0(r2) for some con-
stants r,¢. Therefore, by letting t -~ t + ¢, we will obtain
a solution of our problem by considering the 2m-periodic solutions
of the equation

2, dv 3
+VeEpVEP FE-V *+0 cost (t+¢) (2.3)
dt

[oh)

which for Py " Byn e 0 are equal to r cost + 0(r2).

Let = (h:® > R: h is continuous h(t+27) = h(t)} and

O e, ki
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for any h € % let |h| = sup|h(t)|. Let P: -+ & be the
t

projection defined by

2T

27
(Ph) (t) = % cost f h(s)cos s ds + % sint f h(s)sin s ds. (2.4)
0 0
For any h ¢ %, the equation
2
d”v
i A A h (2.5)
dt

has a solution in % if and only if Ph = 0., Furthermore, there
is a continuous linear operator K: (I-P)% - (I-P)% such that

K(I-P)h is the unique solution of

2

[oN

Y +v = (I-P)h (2.6)

“J

t

which satisfies PK(I-P)h = 0; that is, K(I-P)h is simply the
2n-periodic solution of Equation (2.5) which does not contain cost,
sint in its Fourier series. To this solution K(I-P)h, one can
add an arbitrary linear combination of sint and cost to obtain the
general solution of Equation (2.6). As remarked earlier, it is
only necessary for us to add a term r cost.

If r is fixed and we define

Pr = {(h ¢ P: (Ph) (t) = r cost},

3

d
f(VrPl'P4) i PIV + p4 a\é b 4

e i
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then v is a solution of Equation (2.3) in P if and only if

v=rcost +w, we (I-P)Z (2.7a)
Ed d2w
ke | — t w= (I-P)£(r cos(+) + wW,P;/P,) (2.7b)
k| dt
?j P[f(r cos(-) + w,pl,p4) + o0 cos(*+¢9)] = 0 (2.7c)
i

& since (I-P)cos(*+¢) = 0.

By an application of the Implicit Function Theorem, there are
8§ > 0, e > 0, such that, for |x| < &, lpl[ + [p4| < g, there is
a unique solution w*(r,pl,p4) of Equation (2.7b) in (I-P)%,
the function w*(r,pl,p4) is analytic in r,PysP, and
w*(O,pl,p4) = 0. Furthermore, it is very easy to see that
w*(r,pl,O) is an even function of t since v = r cost + w and
only powers of v occur on the right hand side of Equation (2.7b)
for Py = 0.

Since w*(r,pl,p4) is uniquely determined it follows that there
is a solution v = r cost + w ¢ Pr of Equation (2.3) which lies in
a sufficiently small neighborhood of zero if and only if

v = r cost + w*(r,pl,p4) and (r,¢,p1,o,p4) satisfy the bifurca-

Y — T
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tion equations

T

P[f(r cos(-) + w*(r.pl,p4), PysP,) + 0 cos(s + ¢)] = 0.

From the definition of P in Equation (2.4), these latter equations

;;.
k
i
4
}

are equivalent to the system of equations

S
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def

2m
GICr,¢,p1,o,p4) = 0 cos ¢ + f f(r cost + w*(r,pl,p4)(t),pl,p4)cost dt =0

0

3|

2m
J f(r cost + w*(r,pl,p4)(t):Pl,p4)sint dt = 0.
0

A=

G2 (rl¢'pllcrp4) de o sin ¢ +

Since w*(r,pl,O) is an even function, it is clear that
Gz(r,¢,pl,o,0) = ¢ sin ¢. For w*(r,pl,p4) = 0, it is easy to
evaluate the above integrals. If this computation is made and
one uses the Taylor series to obtain the order estimate 0(|plr] +

|p4r| + ]r|3) on w*(r,pl,p4), the bifurcation equations become

3.3
Gl(r,¢,pl,o,ph) =g cos ¢ + Pr-gzt + rgl(r,pl,p4) =0 (2.8a)
Gz(r,¢rplrc,p4) =osin ¢ +p,r+ p4rgz(r,p1,p4) =0 (2.8b)
where

e 2 2 2 2
9,@:ppy) = 0Upy 1% + Ipy|% + ooy | + Plpy| + £olp,| + £

3 (2.9)
9y (rspspy) = 0" + |p;| + [py]).

These results are summarized in the following lemma.

Lemma 2.3. There is a neighbushood U C »* of (r,py,0,p,y) =0

and a neighborhood Vv C % of v = 0 such that Equation (2.3)

has a solution Vv ¢ Pr NV for (r,pl,c,p4) €¢ U and a given ¢

if and only if (r,pl,o,p4,¢) satisfy the bifurcation Equations

(2.8) where 9109, satisfy (2.9).

|
|
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An immediate corollary is the following result on the undamped

Duffing equation. ?

Corollary 2.1. There is a neighborhood U C 9?2 of (pl,U) =0

and a neighborhood V C % of v = 0 such that the only 2m-periodic

% solutions in V of the undamped Duffing equation 1

2
Q_% + v = PV - v3 + g cost (2.10)
dt

are even functions of t if o # 0.

Remark 2.l. The conclusion of Corollary 2.1 is also valid for the

Proof, For Py ™ 0, the second bifurcation Equation (2.8b) is
o sin ¢ = 0. Therefore, if o # 0, we must have ¢ = 0. If :

¢ = 0, then v(t) = r cost + w*(r,pl,O)(t) is an even solution of

.

Equation (2.10). Since all solutions of Equation (2.10) can be
obtained from Equation (2.3) and the Lemma 2.3, we have proved the

desired result.

equation
2
g—% T "DV~ v3 + of (t)
dt
27 | :
where £(t) is even in t and j f(t) cost dt = . To prove ;
0 1

this, one considers the same equation with t replaced by t + ¢

and observes that the bifurcation equation obtained by projecting

onto sint has the form ¢ (sin ¢)h(r,¢,p1) = 0 with h(0,4¢,0) = 1.




One can now repeat the same argument as in the proof of Corollary

2.1 to complete the proof.

3. Analysis of the Bifurcation Equations.

In this section, we analyze the bifurcation Equations (2.8)
for (r,¢) and deter:iine the surfaces (bifurcation surfaces) in
the parameter space across which the number of solutions (x,¢)
changes. If the number of solutions is to change at some point
in the parameter space, then there must be a multiple root (r,¢)
of Equations (2.8) at these values of the parameters; that is,
a(Gl,Gz)/a(r,¢) = 0., Our objective, therefore is to obtain the
values of the parameters at which multiple solutions of Equations
(2.8) occur. Basic to the investigation is the following a priori

estimate,

Lemma 3.1. There is a neighborhood U C 9?4 of the point

(r,pl,c,p4) = (0,0,0,0) and a constant ¢ such that all solutions

(r,9) of Equations (2.8) with (r,pl,o,p4) € U satisfy

izl < eUpy (Y2 + [a|Y2 + |p, D).

Proof, If this is not the case, then there is a sequence

(¢n:rnrpln10n:p4n) with (rnlplnoonrp4n) -~ (0,0,0,0) as n

such that

1/2 |P4nll/2

Py, |
1n +0,_r__._+0'

¥ Y r

n n n
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as n » «, Dividing the Equation (2,8a) by rg and letting n » o,

this implies that 0 = - % , Wwhich is a contradiction. This proves

the lemma.

Lemma 3.1 justifies the scaling

L/3 2/3 2/3

Ex gl Pu By ™ PET "¢ Py = o

in Equations (2.8). Making this change of variables and dividing

the equation by o, one obtains the equivalent equations for o # 0.

El def pp - % p3 + cos ¢ + p0(02/3) = i
G, 9% 6p + sin ¢ + 60?3 = 0.
For (p,0,6) = (0,0,0), these equations only have the solution
(prd) = ((%)1/3,0). Furthermore,
9(4 1/3
3(G,,G,) s g
il

g

at these points. The Implicit Function Theorem implies there are

S :
L A R S ¥ N S S

> 0 and « > 1 such that Equations (2.8) have unique solutions

“0
|3 < 1/a.

near the points (p,¢$) above for |[o| < €y |p|3 + |6

Therefore, in the original variables (pl,c,p4), no bifurcation

3 occurs in the region

3 3 2
SG.EO = {(pyso,py): |o| < egr |Pyl™ + [Pyl” < 0%/a}




neighborhood

This implies that the bifurcation surfaces in an ¢

0
of (pl,o,p4) = 0 must be in the region

QR SR
((®y,0:py): Py + B < 2y 0% < allpy]® + |p,l°

R
areg

In the region
] o N Ra,eo N {(py,o/py): Py > 00 [Py < Py}
the scaling

2 2 3
r=yp, py=u pp =m°, o=w,ne [-1,1], |v] ol + |n])

leads to the new bifurcation equations

El = np - % p3 + v cos ¢ + pO(uz) = (
2 = 5 (3.1)
R G2 =p + v sin ¢ + p0O(u”) = 0.
bt
b |
-1 For u = 0, one obtains directly from Equation (3.1) that
' 3(5,,G,)
def l'

for any solution (p,¢) of (3.1l). Since n2 < 1, the only solution
of A=0 is p = 0. But this implies v = 0 which implies the

Equation (2.3) is autonomous. For this situation, we know Equation

. (2.3) has only the solution v = 0 for any Py > 0. Therefore, no
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b | bifurcation occurs in R,.
One can make a simildr analysis in the region
Ra,eo N {(pl,c,p4): Py < O, ]pll < -p4} and arrive at the same
conclusion.

Consider now the region

LR

e S

Ry = Ry,e, N (pysospy): By < 0. |pyl < =p)

If we use the scaling r = up, Py = -uz, g = vu3, p4 = muz,

Im| < 1, |v|] < a(1l + |[m|) the bifurcation equations become

61 = -p = % p3 + v cos ¢ + O(uz) '
= . 2 |
G2 =mp + v sin ¢ + 0(u")
and, at u = 0,
3(G,,G,)
Ty, 9 2 e 2

——— 2 - + - 4+ = - .

det 55,0 p[=(1 7 ™ ) (1 7 P ) m~]

0. With an argument

This quantity is zero only if o

Y T

- P
P o ol .
B i, W et s B 4 N

similar to the one for Rl’ one observes there is no bifurcation

at this point.
Let us now analyze the region

Ry = R N {(pys9sPg): Py > 00 [Pyl 2 Py}

arEg

A For the scaling
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2 3 2

r=ypp, Py =0, 0=w, py=m Iml <1, [v] <a@+ [m])

IA

the bifurcation equations become

E | 1% B = % p3 + v cos ¢ + pO(uz)
E ¢ (3.2)

2 v sin ¢ + mp + mpO(uz) = 0.

2l
I
o

(9]
I

Recall that we need only consider these equations for |m| < 1,

|[v] < a1 + |m|) and p small. Therefore, p will be in a

1/3

bounded set, |p| < 2c(l+o ). The corresponding determinant of

the Jacobian matrix is given by

A i - % 0% & 0fu%) = v sin ¢ |
3(G;,G,) _

= det 375757_— = det

>

m + mo(uz) Vv cos ¢

v{[l - % pz] cos ¢ + m sin ¢ + O(uzi}.

For v# 0 (i.e. 0o # 0), the multiple solutions of our scaled

- &,
LB USSR L SERESSEE S S T

bifurcation equations are the solutions of the three equations

|
hl dgf p = % p3 + v cos ¢ = pO(uz) :
3
h, b o mp + v sin ¢ = mpO(Ez) (3.3) ?
' h3 dgf (1 - % pz)cos ¢ + m sin ¢ = 0(u2).




s v SR b DS 0 3 R 2 ) e el SRR A - S o SR T N R i o7 el B i

= A

1,' The outline of the program is now as follows.

Treating p as a parameter, we determine ¢,v,m as functions
of p such that Equations (3.3) for u = 0 are satisfied. If
det a(hl,hz,h3)/3(¢,v,m) # 0, then we can determine solutions of
Equations (3.3) for u sufficiently small. Elimination of the

; | parameter p from the resulting solutions v*(p,u), n*(p,n) will i

give the possible bifurcation surfaces v as a function of m,

or perhaps m as a function of v,u. We then verify that the
number of solutions (p,$) of Equations (3.2) [or equivalently,
the number of solutions (r,¢) of Equation (2.8)] changes by two

as this surface is crossed. This proves that it is a bifurcation

surface.
1f hl = h2 = h3 =0, 0 = 0 then
cot ¢ = = (3.4)
m e 3 2
i P
and so
F
| - SRl - B o 3.2
V| n° = {K p l][l - (3.5)
i
e 1
l
also, hl = h2 = 0 further implies
i
’ 2 5 3 B 28 '

4 Equations (3,4), (3.5), (3.6) are the parametric forms of the

solutions ¢,m,v as functions of p if we substitute Equation (3.5)

1 into Equations (3.4) and (3,6). Eliminating p from Equation (3.5),
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(3.6), we have

v2 = %T-[l + om? + (1-3m2)3/2y, (3.7)

The locus of the points in the (v,m) plane described by Equation
(3.7) are plotted in Figure 1.

) 35 5

>
1]

det a(hl,hz,h3)/8(¢,m,v),
then

v sin ¢ - p[% p2 - 1]cos ¢ sin ¢ = mp cosz¢.

>
I

As remarked earlier, if Al # 0 at a solution (¢0,m0,v0,p0) of
hl = h2 = h3 = 0, then we can obtain a solution (¢,m,v) of
Equations (3.3) for |p—p0| and |u| sufficiently small by
employing the Implicit Function Theorem.

If h, = h, = h, = 0, then

g “ By = By
. -2m//% (2+/1-3m?)

>4
]

0 since m2 <1l. If m= 0, then

and Al = 0 implies m
v2,02,9) = (16/81, 4/9, 0) or (0, 4/3, ©/2).
Therefore, at each solution (¢0,m0,v0,p0) of hl = h2 = h3 =0

for which (vo,mo) # (+4/9,0) or (0,0), there is an € > 0 and

unique solutions ¢ (p,u) ,m(p,u)v(p,u) of Equations (3.3) for
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le=pgle Iul < €0 ¢(pgr0) = pgr mpy,0) = my, v(py,0) = vy. Thus,
if we exclude a neighborhood V of the points (*4/9,0) and (0,0)
in the (v,m) plane, then we can find a Mg > 0 such that the
Equations (3.3) can be uniquely solved for (v,m,v) as functions
of (p,u) for || < M, and lo| < 2c(l+al/3), the a priori bound
on p. Elimination of p from the corresponding functions m,v
gives part of the surface indicated in Figure 2 in terms of the
unscaled variables (pl,o,p4). The first approximation to the
explicit formula for this surface is obtained from the scaling and

Equation (3.7) and is given by
2 8 d 2 2 2\ 2/2
s E)l + 9p1p4 + (pl - 3p4) /:‘ (3.8)

At the points (v,m) = (+4/9,0) in the (v,m) plane where
Al = 0, we compute another Jacobian and apply the implicit function

theorem. At these points and for (p,¢) = (+2/3,0), we see that

3 (Illlhzlh3)
d(p,m,v)

A, = det = =2 £ 0.
Therefore, we can solve the Equations (3.3) for p,m,v as functions
of ¢,u for ¢, sufficiently small. Eliminating the parameter
¢ gives the bifurcation surface near the points (24/9,0).

At the point (v,m) = (0,0), the corresponding solutions (p,¢)
of h, =h,=h, =0 is (x2//3,n/2). 1f we let v = am, then the

1 2 3
bifurcation equations are




_,. A Sy i
e

p3 + am cos ¢ = O(uz)

»lw

=p—
(3.9)

N oM

5’.’3".‘3‘

p + a sin ¢ = 0(u2).

For (p,¢) either of the above points, we have h,/m = 0
implies o = *2//3. We wish to determine the multiple solutions

of Equation (3.9). The analysis proceeds as before. 1If

>
I

det 3 (h;,hy/m)/3(p,9)

then

S

a(l-9p2/4)cos ¢ + am sin ¢.

>
]

We now consider the equations hl = 0, hz/m =0, Z = 0 as defining

i i iy

functions p,m,00 as functions of ¢. Along the solution of these
equations, we have

det = +
9(p,m,a) 3/3

# 0.

Therefore, we can find functions m(¢,u), o(d,u) and p(d,u)

that will satisfy the Equations (3.9) for u close to zero and ¢

close to 7/2. Eliminating ¢ from the functions m(¢,u) and
o(¢,u) completes the discussion of the possible bifurcation surface
shown in Figure 2.

It remains to show that the surface in Figure 2 is the bifurcation

surface, that is, we must show that the number of solutions (p,¢)
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of Equations (2.8) changes as this surface is crossed. However,
we need not check all points on the surface. It is sufficient,
for example, to show that the number of solutions changes as we
cross the surface in the plane Py = 0 since the only possible
way for the number of solutions to change is to pass through a
multiple solution. For Py = 0, Corollary 2.1 implies all solu-
tions for o = 0, Py > 0 and one solution for P, = 0, o # 0.
Therefore, the surface in Figure 2 is a bifurcation surface with
the number of solutions as indicated.

For p, < 0, one can make a similar analysis as above to obtain
the corresponding bifurcation surface lying below the (0,p4)
plane. Of course, one has two more periodic solutions in each
region as a result of Lemma 2.2. We do not draw the surface in
this case.

We summarize these results in the following theorem.

Theorem 3.l. Let o0 = p;/2p3. There is a neighborhood U in 9?3

of (0,0,0) such that the bifurcation surface T for Equation (1.1)

with (pl,c,p4) € U is depicted in Figure 2 and the surface for

Py > 0 is approximately given by Equation (3.8). The number of

2m-periodic solutions of Equation (1.1) at a point (pl,c,p4) e U

which are continuous in (p3.p4) is shown in Figure 2.

Remark 3.1, The results of this paper are easily extended to the

equation

2
u e du _ 3
e Sdalt R B S il

o

I A o st it ot
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provided that £(t) is an even function of t and
IZ’H’
0

with Remark 2.1.

[1]

(2]

[3]

[4]

f(t)cost dt

T. One uses the same type of analysis together
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